

CARPET AND PILE PRODUCT PRINTING SEVERAL TECHNOLOGIES ARE AVAILABLE TO PRINT CARPET AND OTHER PILE PRODUCTS.

CHROMOJET.SPOT COLOR PRINTING

25 dpi resolution The color is pre-mixed

CHROMOJET.PROCESS COLOR PRINTING

50 or 76 dpi resolution

The shade is mixed on the carpet out of a number of basic colors

COLARIS³. INKJET PRINTING TECHNOLOGY

Industrial InkJET technology with high resolution is used to print the proper shade out of a number of base colors

CHROMOJET 25 DPI SPOT COLOR PRINTING

25 dpi printing is the most common digital carpet printing technology. The dye with the pre-mixed shade is sprayed into the pile using HSV400 type valves.

- + Printer works with up to 16 pre-mixed colors (dye pastes)
- + Very rich, full and saturated colors
- + Special dyes (neon, with special wash or light fastness,...) can be used for special purposes
- + Perfect and equal penetration of all colors
- + High printing speed of up to 12 m/min at 4 m width
- A color change requires washing of the system
- Some waste of dye
- Print definition is not as good as on 50/76 dpi printers

CHROMOJET 50/76 DPI PROCESS COLOR PRINTING

76 dpi printing is the most flexible digital carpet printing technology. Up to 16 process colors are sprayed into the pile using HSV800 type valves. The shade is actually mixed on the surface of the carpet.

- + Almost no waste of dye
- + Variable resolution of 50 or 76 dpi
- + No washing before color change
- + Almost unlimited number of shades which are mixed on the carpet
- Newly developed press station enhances penetration dramatically on high pile carpets
- + Energy and water saving
- + Easy and fast sampling
- Printing speed is lower in comparison to 25 dpi spot color printing
- Light shades have lower penetration in comparison to dark shades

	and the second second
COLORBOOK PAN	
COR PAN	TONE BASE
	Conception and an an
	AND DESCRIPTION OF AND ADDRESS OF
321 521	
	871
371 371	901
	911
	921
611	941
641 100 100 100 100 100 100 100 100 100 1	971
671	

SUPRA**PRESS.** MINIMIZE DYE PICK-UP AT MAXIMUM PENETRATION

The **SUPRAPRESS** is one of the most important developments in the last years. It enables the printing of high pile products with a minimum amount of ink or dye and reaching full penetration.

Function:

The carpet or textile is squeezed in between 2 rollers which press the dye or ink from the top of the pile into the pile. The challenge is to have the same pressure force and gap all over the width and to avoid any smearing or ghost printing.

The SUPRAPRESS is installed directly behind the printing unit, before steamer or dryer.

In case of Polyester printing it is a must to use the SUPRAPRESS system to minimize drying time.

- + Little space needed can be elevated or on ground floor
- + Can work with constant gap or on constant pressure
- + Amount of pick-up can be reduced by about 80% saves thickener, chemicals and energy
- + Maximum penetration also on high pile products
- + No frosting undyed fibers are dipped into the dye
- + No smearing or ghost printing rollers are washed and dried continuously
- + Minimum maintenance required
- + Available for CHROMOJET as well as for COLARIS
- + In case of Polyester printing pick-up is minimized

This picture shows a stripped polyester needle-felt carpet printed on **COLARIS** using disperse inks, pressed by a **SUPRAPRESS** system and fixed by a HT steamer.

76 dpi print before pressing

76 dpi print after pressing

COLARIS³. DIGITAL INKJET PRINTING ON TEXTILE AND PILE PRODUCTS

Inkjet printing is new on pile products but has a huge potential. The required penetration can be achieved by application of the pre-coat and using the **SUPRAPRESS** technology to push the tiny amount of high concentrated ink deep into the pile.

- + Printer works with 4, 6 or 8 base colors (inks)
- + Almost no waste of ink
- + Variable resolution of 400*400; 400*800; 400*1,200 and 400*1,600 dpi
- + Best penetration on pile weights from 100 to 800 g/m^2
- + No washing of the system before color change
- + Unlimited number of shades which are mixed on the carpet
- Newly developed press station enhances penetration dramatically on high pile carpets
- + High printing speed and moderate investment
- + No color kitchen needed
- Light shades have lower penetration in comparison to dark shades
- Not all dye families are available
- Change between dye families (i.e. between disperse and acid) is not simple and takes time and money
- Ink price is higher in comparison to dye used on CHROMOJET

ZIMMER AUSTRIA | DIGITAL PRINTING SYSTEMS

CARPET PRINTING TECHNOLOGIES (ENG)

BASICS.INKJET

RESOLUTION

- Resolution higher than 200 dpi cannot be recognized on carpets.
- There is a native resolution of the print head and a print resolution which can be higher in most cases.
- To get a higher resolution in x or y axis the number of passes is increased.
- Higher print resolution means more ink, slower speed and higher cost.
- Resolution should not be higher than needed!

dpi_{Horizontal} = frequency (hz) / carriage speed (ips)

The resolution is the main parameter to control ink pick-up. Higher resolution means more droplets and therefore higher pick-up at a lower speed.

NUMBER.BASE COLORS

- Minimum 4 colors (CMYK or RGBK) are needed.
- In textile and paper printing image quality is further improved with additional light colors.
- A 200 dpi 8 color design looks the same as a 4 color design at 400 dpi.
- As long as for the dark and light shades the same pigments or dyes are used as long no wider color gamut can be achieved it just looks better especially in the light shades and tones.
- For special applications also CMYK + Orange, Purple, Red and Blue can be used.
- For pile products CMYK or RGBK is sufficient.
- But with additional light CMYK a better penetration on light shades can be achieved. This might make sense on higher pile carpets and floor products.

24 July 2017

DROPSIZE

Inkjet works with individual droplets generated by a piezo actuator. For pile products the most important parameter is the amount of ink needed to achieve good penetration and saturated and rich colors.

- The dropsize is an important factor it directly influences the ink laydown.
- Dropsizes range from 2 to 250 picoliter depending on printhead.
- The bigger the dropsize the more ink can be applied in a single pass.
- If the dropsize is too big for the substrate, doting or dithering may result.

So the dropsize is greatly influencing the print speed, definition, dithering and finally also the cost of print.

GRAYSCALE.PRINTING

Variable drop sizes are combined to achieve maximum definition and productivity:

Siution

INK.LAY-DOWN OR INK.PICK-UP

The total amount of ink lay down (= pick-up) to the substrate is calculated as follows:

Pick-up (ml/m²)

= x-dpi * y-dpi * 1,000/25.4 * 1,000/25.4 * dropsize(pl)/ 1E9 = x-dpi * y-dpi * dropsize * 1,550 / 1E9 = x-dpi * y-dpi * dropsize / 650,000

INFLUENCE. DROPSIZE ON SPEED

To get 30 ml/m² ink lay-down on a printer with 400 * 400 dpi native resolution at different drop sizes, the following number of passes is required:

Dropsize (pl)	Passes	Production speed
160	1	100 %
60	2	50 %
40	3	33 %

If you compare the performance of inkjet printers you should always use a printed sample and compare print quality, penetration and the speed achieved on this sample.

The theoretical print speed using a single pass is in most cases not sufficient to reach a good quality.

BASICS.INKJET

PRE-TREATMENT

On traditional printing but also on **CHROMOJET** printing all chemicals are included in the print paste.

On inkjet printing this is not possible for the following reasons:

- Printheads are working only in a very narrow range of viscosity
- Liquid must be very pure and within a certain pH range of about 6-8

In inkjet printing these chemicals must be applied before printing.

In carpet printing the pre-coat has the following function:

- It helps to distribute and carry the dyestuff to the fibers and allows penetration
- Thickener prevents the low viscosity ink from running through the carpet pile to the back
- Acid is speeding up the fixation process on PA and wool
- Wetting agents improve penetration

APPLICATION.TECHNOLOGIES

Padder

Screen

difficult to control, pre-coat is applied also on the back side of the carpet

low penetration and limited pick-up; not so easy to control; eventually for high speed applications

CHROMOJET digital system; wide range of applications; closed system, independent from speed

OVERVIEW

ZIMMER AUSTRIA offers 3 different models of the new high-performance industrial inkjet print heads from FUJI-Dimatix (ex Spectra). The **StarFire™ SG1024 (SA/MA/LA)** is a compact, self-contained unit built to withstand demanding industrial textile and other applications. It uses field proven materials to deliver consistent output over a long service life with continuous ink recirculation and single color operation at 400 dpi. Equipped with a single replaceable metal nozzle plate that is designed to withstand abrasion and resist damage.

TECHNICAL.FEATURES

- 3 types of interchangeable print heads with different dropsizes for a wide range of applications
- Robust and reliable construction for industrial use
- Metal nozzle plate highly resistant
- Nozzle plate and 256 jet segments can be replaced
- VersaDrop[™] Incorporated binary and greyscale jetting modes
- RediJet[™]- Continuous ink recirculation system to avoid nozzle blockage and to reduce ink waste from spitting and purging
- High firing frequency for high productivity
- High drop velocity distance between printhead and nozzle can be up to 10 mm

InkJET is moving from an experimental stage into industrial stage!

It is not so important who has the highest resolution or the lowest cost - the winner will be who has the most reliable, stable and flexible system!

PRINT HEAD MODELS	StarFire™ SG1024/SA	StarFire™ SG1024/MA	StarFire™ SG1024/LA
number of addressable jets	1,024	1,024	1,024
waveform & fluid dependent drop size	12 - 35 pl	30 - 75 pl	75 - 180 pl
applications	Light & medium fabrics i.e. fashion, home textiles, flags & banners,	Heavy textiles i.e. velour, plush, terry products, nonwoven,	Voluminous substrates i.e. carpet, fur, blankets,

24 July 2017

COLARIS³. INDUSTRIAL INKJET PRINTING ON CARPET

COLARIS³.LINE - WITH **CHROMOJET** INLINE DIGITAL PRE-TREATMENT

A combining of the **CHROMOJET** valve based digital INKJET printing line, successfully used in the carpet printing industry for many years, with the **COLARIS³** digital piezo based INKJET printer makes it possible to push the print resolution beyond any limit known so far.

The **CHROMOJET** technology is used as a digital applicator for INKJET pre-treatment. The applied pre-treatment, equally distributed in the pile fabric by a penetration roller is subsequently printed with the **COLARIS³.INKJET** piezo printer in a wet on wet process.

This specially developed process combines the advantages of both systems: perfect penetration by **CHROMOJET** technology and high resolution printing by **COLARIS³.INKJET** piezo printer.

Print resolution can be 800 dpi or more. A large color gamut with highest image quality including fine degradation of colors are the benefits. This makes the reproduction of photographic images much easier by using a real four-color printing with CMYK process colors.

COLARIS³. FINISHING LINE - STEAMING, WASHING, DRYING

The layout of a typical PA carpet printing line for loop or cut-pile carpets will be based on the well-proven components from a **CHROMOJET** print plant.

1	Fabric unrolling
2	Roller compensator
•	(pre-steamer or pre-washer)
3	Carpet centering device
4	CHROMOJET.DPT applicator for inline pre-treatment of the carpet
5	Distribution & penetration roller
6	COLARIS ³ digital inkjet piezo printer
7	Press station for enhanced penetration of the print
8	Horizontal inline steamer
9	Carpet washer with vacuum extraction
•	(carpet pile impregnation)
10	High capacity nozzle dryer or stenter dryer
11	Roller compensator
٠	Inspection table
12	Re-rolling

COLARIS³.ADVANTAGES

- High-capacity industrial ink jet printing system for textiles and carpets
- Built for 24/7 operation
- Print head failure does not stop production printing continues at reduced speed
- Suitable for light weight silk to heavy velour terry towels and carpets
- Recommended inks ensure excellent fastness properties and Oeko-Tex® Standard 100
- Open ink system any ink approved by ZIMMER AUSTRIA can be used
- Open to various RIP Software. i.e. Caldera®, Inedit®, and others.
- Fully assembled printer for easy shipment and quick start-up
- Multilingual user interface
- ZIMMER AUSTRIA gives full support with technical and technological know-how
- Customer support by local service partners
- Simple and easy upgrade of hard- and software
- Remote maintenance system included

MODULAR.LAYOUT

- Fabric feeding device built according to customers' requirements (A-frame, small batch unrolling, lattice guiding for elastic fabrics, etc...)
- Patented inline pre-treatment by **MAGNOROLL** application system or **DPT** (Digital inline pre-treatment) with a **CHROMOJET** printer

BRUCKENAUER

- Suitable for any fabric structure incl. woven, circular and flat knits, flock, velvets, velour terry fabrics, nonwoven, tufted and many more
- The already existing printing widths 1,800; 2,600 and 3,200 mm have been completed with 4,200 mm width to cover the demand of digital carpet printing
- Ink setup for CMYK, CMYK+2 or CMYK+4 or with 2 x CMYK for double speed printing
- Efficient head cleaning
- Permanent ink circulation system for reduced maintenance costs and reduced ink consumption
- Ink storage tanks with large capacity, allowing refill from any canister size without production stoppage
- Various post-treatment equipment available

24 July 2017

ummer Feeling

COST.DIGITAL PRINTING IN COMPARISON

INK AND DYE COST IN COMPARISON

Dye cost	EUR 25,-/kg
Ink cost	EUR 20,-/kg
Dye consumption	1.5% of pile weight
Ink consumption	0.5% of pile weight
Thickener cost	EUR 20,-/kg
Thickener usage	4 g/kg

COST.FACTORS OF INKJET PRINTING

- Investment cost and depreciation
- Cost of energy and utilities (air, water, ...)
- Labour cost
- Cost of printheads
- Cost of pre-coat (thickener, chemicals, ...)
- Ink cost

In practice there are 3 important cost factors: Ink, labour and depreciation.

This diagram shows the cost distribution based on a total print cost of about EUR 1.3/m² on 400 g carpet, output about 1 mio m² per year on 2 shift operation, ink cost of EUR 25,-

COMPARISON.DIGITAL PRINTING TECHNOLOGIES

	CHROMOJET 25 dpi spot color printer	CHROMOJET 50/76 dpi process color printer	COLARIS ³ INKJET printer
System	Spot or pre-mixed color printing using magnetic valves	Process color printing using magnetic valves	Process color printing using piezo inkjet printheads
Resolution	25 dpi	50/76 dpi	400 * 800 dpi 400 * 1,200 dpi
Ink and dye lay-down	500 - 5,000 g/m²	300 - 3,000 g/m²	10 - 200 g/m²
Dye and ink systems	 Acid and pre-met for polyamide, wool and silk Disperse for polyester Reactive for cellulose and cotton Cationic for acrylic and cationic dyeable polyester Direct for cotton VAT for cotton 		 Acid Disperse Reactive N/A N/A N/A
Process	All chemicals and thickener are included in the dye paste		Chemicals and thickener are applied separately from ink
Production speed	Up to 12 m/min at 6 colors and in 4 m width	Up to 3 m/min at 8 colors in 4 m width	Up to 4 m/min at 400 * 800 dpi 2 passes, 16 heads, in 4 m width
	Printing	Process	
Polyamide and wool using acid and pre-met dyes Cationic dyeable Polyester using cationic dyes	 Printing with about 300 % pickup Steaming at 100°C for about 3 - 8 minutes Washing Drying 		 Pre-coating with thickener and acid Printing with about 5 % pick-up Pressing Steaming at 100°C for 3-8 minutes Washing Drying
Polyester process using dis- perse dyes	 Printing with about 75 % dye pick-up SUPRAPRESS Drying High temperature fixation at 180°C for 1 minute using steam or hot air Reductive washing Drying 		 Pre-coating with thickener Inkjet printing with about 5% ink pick-up SUPRAPRESS for maximum penetration Drying Fixation at 180°C for 1 minute Reductive washing Drying

	CHROMOJET 25 dpi spot color printer	CHROMOJET 50/76 dpi process color printer	COLARIS ³ INKJET printer
	Applic	cations	
	RugsMats with full penetrationContract carpet	 Rugs and mats Promotion carpets Carpet tiles Polyester / acrylic blankets 	 Mats Promotion, event and exhibition carpets Carpet tiles
Carpet constructions			
	Advantages / Disadvan	tages in carpet printing	
	+ Full penetration	+ Full penetration	+ Highest flexibility
	+ Relatively simple process	+ Almost unlimited number	+ Low pick-up
	+ All types of dyes can be used	of shades	+ Only 4 colors
	+ Low-cost dyes from many	+ All types of dyes can be used	+ No color kitchen
	suppliers	+ Low cost dyes from many	 Limited penetration
	 More difficult to adjust color shades 	suppliers	 Limited selection of inks
		 More difficult to adjust color shades 	 Limited chance to repair a
	 A new shade requires a color change 		printhead
	 Limited number of shades and colors 		 Printer must be operated ir a clean and controlled environment
	• For low to high pile	For low to high pile carpet in combination with SUPRAPRESS	• For low to medium pile weights
	products	• For short to medium runs	• For small to medium runs
Resumee	For medium to long runsFor special dyes and effects	Also for prints on woven carpet	• Perfect for the promotion and event industry
		• Perfect for polyester printing	 'Web to Print' may be realized

TRENDS.IN CARPET PRINTING

- DIGITAL PRINTING
- PROCESS COLOR TECHNOLOGY
- CHROMOJET OR COLARIS³.INKJET TECHNOLOGY
- PRINTING ON POLYESTER
- PRINTING ON WOVEN CARPETS
- ENVIRONMENTAL FRIENDLY PROCESS AND RECYCLABLE CARPETS
 AND RUGS
- More experimental and individual Designs
- Special Constructions and Materials
- SHORTEST RUNS
- SAMPLING WITHIN A DAY
- SHORT DELIVERY TIME OF A FEW DAYS

